Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
2.
Journal of infection and public health ; 2023.
Article in English | EuropePMC | ID: covidwho-2287706

ABSTRACT

Background Infection with SARS-CoV-2 may perturb normal microbiota, leading to secondary infections that can complicate the viral disease. The aim of this study was to probe the alteration of nasopharyngeal (NP) microbiota in the context of SARS-CoV-2 infection and obesity and to identify other respiratory pathogens among COVID-19 cases that may affect patients' health. Methods A total of 107 NP swabs, including 22 from control subjects and 85 from COVID-19 patients, were processed for 16 S amplicon sequencing. The respiratory pathogens causing secondary infections were identified by RT-PCR assay, using a kit that contained specific primers and probes combinations to amplify 33 known respiratory pathogens. Results No significant (p>0.05) difference was observed in the alpha and beta diversity analysis, but specific taxa differed significantly between the control and COVID-19 patient groups. Genera of Sphingomonas, Kurthia, Microbacterium, Methylobacterium, Brevibacillus, Bacillus, Acinetobacter, Lactococcus, and Haemophilus was significantly abundant (p<0.05) in COVID-19 patients compared with a healthy control group. Staphylococcus was found in relatively high abundance (35.7%) in the COVID-19 patient groups, mainly those treated with antibiotics. A relatively high percentage of Streptococcus was detected in COVID-19 patient groups with obesity or other comorbidities. Respiratory pathogens, including Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Salmonella species, along with Pneumocystis jirovecii fungal species were detected by RT-PCR mainly in the COVID-19 patients. Klebsiella pneumoniae was commonly found in most of the samples from the control and COVID-19 patients. Four COVID-19 patients had viral coinfections with human adenovirus, human rhinovirus, enterovirus, and human parainfluenza virus 1. Conclusions Overall, no substantial difference was observed in the predominant NP bacterial community, but specific taxa were significantly changed between the healthy control and COVID-19 patients. Comparatively, an increased number of respiratory pathogens were identified in COVID-19 patients, and NP colonization by K. pneumoniae was probably occurring in the local population.

3.
J Infect Public Health ; 16(5): 680-688, 2023 May.
Article in English | MEDLINE | ID: covidwho-2287707

ABSTRACT

BACKGROUND: Infection with SARS-CoV-2 may perturb normal microbiota, leading to secondary infections that can complicate the viral disease. The aim of this study was to probe the alteration of nasopharyngeal (NP) microbiota in the context of SARS-CoV-2 infection and obesity and to identify other respiratory pathogens among COVID-19 cases that may affect patients' health. METHODS: A total of 107 NP swabs, including 22 from control subjects and 85 from COVID-19 patients, were processed for 6S amplicon sequencing. The respiratory pathogens causing secondary infections were identified by RT-PCR assay, using a kit that contained specific primers and probes combinations to amplify 33 known respiratory pathogens. RESULTS: No significant (p > 0.05) difference was observed in the alpha and beta diversity analysis, but specific taxa differed significantly between the control and COVID-19 patient groups. Genera of Sphingomonas, Kurthia, Microbacterium, Methylobacterium, Brevibacillus, Bacillus, Acinetobacter, Lactococcus, and Haemophilus was significantly abundant (p < 0.05) in COVID-19 patients compared with a healthy control group. Staphylococcus was found in relatively high abundance (35.7 %) in the COVID-19 patient groups, mainly those treated with antibiotics. A relatively high percentage of Streptococcus was detected in COVID-19 patient groups with obesity or other comorbidities. Respiratory pathogens, including Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Salmonella species, along with Pneumocystis jirovecii fungal species were detected by RT-PCR mainly in the COVID-19 patients. Klebsiella pneumoniae was commonly found in most of the samples from the control and COVID-19 patients. Four COVID-19 patients had viral coinfections with human adenovirus, human rhinovirus, enterovirus, and human parainfluenza virus 1. CONCLUSIONS: Overall, no substantial difference was observed in the predominant NP bacterial community, but specific taxa were significantly changed between the healthy control and COVID-19 patients. Comparatively, an increased number of respiratory pathogens were identified in COVID-19 patients, and NP colonization by K. pneumoniae was probably occurring in the local population.


Subject(s)
COVID-19 , Coinfection , Microbiota , Respiratory Tract Infections , Humans , Saudi Arabia/epidemiology , SARS-CoV-2 , Nasopharynx , Klebsiella pneumoniae , Obesity , Respiratory Tract Infections/epidemiology
4.
Int J Infect Dis ; 131: 87-94, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2250705

ABSTRACT

OBJECTIVES: The World Health Organization priority zoonotic pathogen Middle East respiratory syndrome (MERS) coronavirus (CoV) has a high case fatality rate in humans and circulates in camels worldwide. METHODS: We performed a global analysis of human and camel MERS-CoV infections, epidemiology, genomic sequences, clades, lineages, and geographical origins for the period January 1, 2012 to August 3, 2022. MERS-CoV Surface gene sequences (4061 bp) were extracted from GenBank, and a phylogenetic maximum likelihood tree was constructed. RESULTS: As of August 2022, 2591 human MERS cases from 26 countries were reported to the World Health Organization (Saudi Arabia, 2184 cases, including 813 deaths [case fatality rate: 37.2%]) Although declining in numbers, MERS cases continue to be reported from the Middle East. A total of 728 MERS-CoV genomes were identified (the largest numbers were from Saudi Arabia [222: human = 146, camels = 76] and the United Arab Emirates [176: human = 21, camels = 155]). A total of 501 'S'-gene sequences were used for phylogenetic tree construction (camels [n = 264], humans [n = 226], bats [n = 8], other [n=3]). Three MERS-CoV clades were identified: clade B, which is the largest, followed by clade A and clade C. Of the 462 clade B lineages, lineage 5 was predominant (n = 177). CONCLUSION: MERS-CoV remains a threat to global health security. MERS-CoV variants continue circulating in humans and camels. The recombination rates indicate co-infections with different MERS-CoV lineages. Proactive surveillance of MERS-CoV infections and variants of concern in camels and humans worldwide, and development of a MERS vaccine, are essential for epidemic preparedness.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Camelus , Phylogeny , Middle East/epidemiology , Saudi Arabia/epidemiology , Genomics , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary
5.
J Med Virol ; 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2229856

ABSTRACT

Due to the adverse effects of obesity on host immunity, this study investigated the effectiveness of COVID-19 vaccines (BNT162b2, ChAdOx-nCov-2019, and mRNA-1273) in inducing anti-SARS-CoV-2 Spike (S) neutralizing antibodies among individuals with various obesity classes (class I, II, III, and super obesity). Sera from vaccinated obese individuals (n = 73) and normal BMI controls (n = 46) were subjected to S-based enzyme-linked immunosorbent assay (ELISA) and serum-neutralization test (SNT) to determine the prevalence and titer of anti-SARS-CoV-2 neutralizing antibodies. Nucleocapsid-ELISA was also utilized to distinguish between immunity acquired via vaccination only versus vaccination plus recovery from infection. Data were linked to participant demographics including age, gender, past COVID-19 diagnosis, and COVID-19 vaccination profile. S-based ELISA demonstrated high seroprevalence rates (>97%) in the study and control groups whether samples with evidence of past infection were included or excluded. Interestingly, however, SNT demonstrated a slightly significant reduction in both the rate and titer of anti-SARS-CoV-2 neutralizing antibodies among vaccinated obese individuals (60/73; 82.19%) compared to controls (45/46; 97.83%). The observed reduction in COVID-19 vaccine-induced neutralizing humoral immunity among obese individuals occurs independently of gender, recovery from past infection, and period from last vaccination. Our data suggest that COVID-19 vaccines are highly effective in inducing protective humoral immunity. This effectiveness, however, is potentially reduced among obese individuals which highlight the importance of booster doses to improve their neutralizing immunity. Further investigations on larger sample size remain necessary to comprehensively conclude about the effect of obesity on COVID-19 vaccine effectiveness on humoral immunity induction.

6.
Vaccines (Basel) ; 11(2)2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2225804

ABSTRACT

Iron is a crucial micronutrient for immunity induction in response to infections and vaccinations. This study aimed to investigate the effect of iron deficiency on COVID-19-vaccine-induced humoral immunity. We investigated the effectiveness of COVID-19 vaccines (BNT162b2, mRNA-1273, and ChAdOx nCov-2019) in iron-deficient individuals (n = 63) and provide a side-by-side comparison to healthy controls (n = 67). The presence of anti-SARS-CoV-2 spike (S) and anti-nucleocapsid (NP) IgG were assessed using in-house S- and NP-based ELISA followed by serum neutralization test (SNT). High concordance between S-based ELISA and SNT results was observed. The prevalence of neutralizing antibodies was 95.24% (60/63) in the study group and 95.52% (64/67) in the controls with no significant difference. The presence/absence of past infection, period since vaccination, vaccine type, and being iron-deficient or having iron-deficiency anemia did not exert any significant effect on the prevalence or titer of anti-SARS-CoV-2 neutralizing antibodies. NP-based ELISA identified individuals unaware of exposure to SARS-CoV-2. Moreover, absence of anti-NP IgG was noted in participants who were previously diagnosed with COVID-19 suggesting the unpredictability of after-infection immunity. To sum up, this study demonstrated an initial lack of evidence on the association between iron deficiency and the effectiveness of COVID-19-vaccine-induced neutralizing humoral immunity. Similar studies with larger sample size remain necessary to obtain comprehensive conclusions about the effect or lack of effect of iron on COVID-19-vaccine effectiveness.

8.
Diagnostics (Basel) ; 13(1)2023 Jan 02.
Article in English | MEDLINE | ID: covidwho-2166319

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is caused by a well-known coronavirus first identified in a hospitalized patient in the Kingdom of Saudi Arabia. MERS-CoV is a serious pathogen affecting both human and camel health globally, with camels being known carriers of viruses that spread to humans. In this work, MERS-CoV genomic sequences were retrieved and analyzed by multiple sequence alignment to design and predict siRNAs with online software. The siRNAs were designed from the orf1ab region of the virus genome because of its high sequence conservation and vital role in virus replication. The designed siRNAs were used for experimental evaluation in selected cell lines: Vero cells, HEK-293-T, and Huh-7. Virus inhibition was assessed according to the cycle threshold value during a quantitative real-time polymerase chain reaction. Out of 462 potential siRNAs, we filtered out 21 based on specific selection criteria without off-target effect. The selected siRNAs did not show any cellular toxicity in the tested cell lines at various concentrations. Based on our results, it was obvious that the combined use of siRNAs exhibited a reduction in MERS-CoV replication in the Vero, HEK-293-T, and Huh-7 cell lines, with the highest efficacy displayed in the Vero cells.

10.
PLoS One ; 17(11): e0277328, 2022.
Article in English | MEDLINE | ID: covidwho-2119171

ABSTRACT

A therapy for COVID-19 (Coronavirus Disease 19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) remains elusive due to the lack of an effective antiviral therapeutic molecule. The SARS-CoV-2 main protease (Mpro), which plays a vital role in the viral life cycle, is one of the most studied and validated drug targets. In Several prior studies, numerous possible chemical entities were proposed as potential Mpro inhibitors; however, most failed at various stages of drug discovery. Repositioning of existing antiviral compounds accelerates the discovery and development of potent therapeutic molecules. Hence, this study examines the applicability of anti-dengue compounds against the substrate binding site of Mpro for disrupting its polyprotein processing mechanism. An in-silico structure-based virtual screening approach is applied to screen 330 experimentally validated anti-dengue compounds to determine their affinity to the substrate binding site of Mpro. This study identified the top five compounds (CHEMBL1940602, CHEMBL2036486, CHEMBL3628485, CHEMBL200972, CHEMBL2036488) that showed a high affinity to Mpro with a docking score > -10.0 kcal/mol. The best-docked pose of these compounds with Mpro was subjected to 100 ns molecular dynamic (MD) simulation followed by MM/GBSA binding energy. This showed the maximum stability and comparable ΔG binding energy against the reference compound (X77 inhibitor). Overall, we repurposed the reported anti-dengue compounds against SARS-CoV-2-Mpro to impede its polyprotein processing for inhibiting SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Drug Repositioning , Polyproteins , Viral Nonstructural Proteins/metabolism , Cysteine Endopeptidases/metabolism , Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Molecular Docking Simulation
11.
Curr Opin Pulm Med ; 28(3): 192-198, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-2077951

ABSTRACT

PURPOSE OF REVIEW: Mass gathering (MG) religious events provide ideal conditions for transmission and globalization of respiratory tract infections (RTIs). We review recent literature on COVID-19 and other RTIs at recurring international annual MG religious and sporting events. RECENT FINDINGS: Due to the COVID-19 pandemic organizers of MG religious and sporting events introduced risk-based infection control measures that limited transmission of RTIs. The 2020 and 2021 Hajj were conducted with limited numbers of pilgrims compared to the annual millions of pilgrims. The Tokyo 2020 Olympic and Paralympic Games were cancelled and held in 2021. The success of the COVID-19 countermeasures at the 2021 Hajj and 2021 Tokyo Olympics was based on implementing good public health and social measures alongside a comprehensive testing strategy. SUMMARY: MG events are associated with transmission of a range of bacterial and viral RTIs. Introducing risk based a multitude of public health interventions can reduce transmission of SARS-CoV-2 and other RTIs.


Subject(s)
COVID-19 , Respiratory Tract Infections , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Islam , Mass Gatherings , Pandemics/prevention & control , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , SARS-CoV-2 , Travel
12.
PLoS Pathog ; 18(9): e1010782, 2022 09.
Article in English | MEDLINE | ID: covidwho-2039444

ABSTRACT

Safe, passive immunization methods are required against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants. Immunization of chickens with antigen is known to induce specific IgY antibodies concentrated in the egg yolk and has a good safety profile, high yield of IgY per egg, can be topically applied, not requiring parenteral delivery. Our data provide the first evidence of the prophylactic efficacy of Immunoglobulin Y antibodies against SARS-CoV-2 in mice. Lohmann hens were injected with recombinant SARS-CoV-2 RBD protein; IgY-Abs were extracted from the eggs and characterized using SDS-PAGE. Antiviral activity was evaluated using plaque reduction neutralization tests. In additional experiments, IgY-RBD efficacy was examined in mice sensitized to SARS-CoV-2 infection by transduction with Ad5-hACE2 (mild disease) or by using mouse-adapted virus (severe disease). In both cases, prophylactic intranasal administration of IgY-Abs reduced SARS-CoV-2 replication, and reduced morbidity, inflammatory cell infiltration, hemorrhage, and edema in the lungs and increased survival compared to control groups that received non-specific IgY-Abs. These results indicate that further evaluation of IgY-RBD antibodies in humans is warranted.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , Antiviral Agents , COVID-19/prevention & control , Chickens , Female , Humans , Immunoglobulins , Mice
14.
Trop Anim Health Prod ; 54(5): 309, 2022 Sep 17.
Article in English | MEDLINE | ID: covidwho-2035198

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently spreading worldwide. The pandemic has already had significant adverse effects on human civilization, the environment, and the ecosystem at national and global levels. Moreover, the various sectors of the food production chain, particularly agriculture and livestock, have also been significantly affected in terms of production sustainability and economic losses. The global pandemic has already resulted in a sharp drop in meat, milk, and egg production. Restrictions of movement at national and international levels, implemented as a part of control strategies by public health sectors, have negatively impacted business related to the supply of raw materials for livestock farmers and farm outputs, veterinary services, farmworkers, and animal welfare. This review highlights the significant impacts of COVID-19 on the sustainability of livestock performance, welfare on a global scale, and strategies for mitigating these adverse effects.


Subject(s)
COVID-19 , Livestock , Animal Welfare , Animals , COVID-19/epidemiology , COVID-19/veterinary , Ecosystem , Humans , SARS-CoV-2
15.
Environ Sci Pollut Res Int ; 29(47): 70822-70831, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2007226

ABSTRACT

COVID-19 pandemic influenced the environment, animal health, and food security. Due to reduced human mobility, the air and water quality increased. Other environmental consequences were the personal protective types of equipment and their haphazard disposal. Atmospheric pollution could be a cofactor leading to an increased COVID-19 mortality rate. Lockdown, however, caused a reduction in air and water pollution. Noise pollution affects the health of individuals and communities in terms of cardiovascular disorders and sleeping problems. Meanwhile, the COVID-19 lockdown controls human activities that reduce noise pollution. Municipal waste affects the environment. Recycling has been reduced in some countries but not in Saudi Arabia. COVID-19 had a drastic effect on livestock production on national, regional, and global levels, affecting countries' capacities to prevent and control diseases of animals and increasing global poverty, becoming a threat to the sustainability of global food security and safety. Many lessons have been learned from the COVID-19 pandemic, so it is wise to study and analyze the previous lessons and shed some light on past pandemics such as the Spanish flu to understand the readings and earn experiences. This paper is focused on the interaction between the pandemic and environmental health from the public health concern rather than other health classifications.


Subject(s)
Air Pollution , COVID-19 , Influenza Pandemic, 1918-1919 , Air Pollution/analysis , Animals , Communicable Disease Control , Food Security , History, 20th Century , Humans , Pandemics , SARS-CoV-2
16.
Vaccines (Basel) ; 10(8)2022 Aug 17.
Article in English | MEDLINE | ID: covidwho-1988069

ABSTRACT

The Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic pathogen that can transmit from dromedary camels to humans, causing severe pneumonia, with a 35% mortality rate. Vaccine candidates have been developed and tested in mice, camels, and humans. Previously, we developed a vaccine based on the modified vaccinia virus Ankara (MVA) viral vector, encoding a full-length spike protein of MERS-CoV, MVA-MERS. Here, we report the immunogenicity of high-dose MVA-MERS in prime-boost vaccinations in mice and camels. METHODS: Three groups of mice were immunised with MVA wild-type (MVA-wt) and MVA-MERS (MVA-wt/MVA-MERS), MVA-MERS/MVA-wt, or MVA-MERS/MVA-MERS. Camels were immunised with two doses of PBS, MVA-wt, or MVA-MERS. Antibody (Ab) responses were evaluated using ELISA and MERS pseudovirus neutralisation assays. RESULTS: Two high doses of MVA-MERS induced strong Ab responses in both mice and camels, including neutralising antibodies. Anti-MVA Ab responses did not affect the immune responses to the vaccine antigen (MERS-CoV spike). CONCLUSIONS: MVA-MERS vaccine, administered in a homologous prime-boost regimen, induced high levels of neutralising anti-MERS-CoV antibodies in mice and camels. This could be considered for further development and evaluation as a dromedary vaccine to reduce MERS-CoV transmission to humans.

17.
J Infect Public Health ; 15(6): 685-688, 2022 May 13.
Article in English | MEDLINE | ID: covidwho-1945692

ABSTRACT

BACKGROUND: Rheumatic diseases patients receiving Rituximab had severe COVID-19 disease. Although they had impaired humoral immune responses following COVID-19 vaccine, they had preserved cellular immune responses. Waning of COVID-19 antibody responses was observed within six months post vaccination among immunocompromised patients. Recent reports showed fatal outcome of breakthrough SARS-CoV-2 infections among vaccinated high-risk rheumatic diseases patients receiving Rituximab. SAR-CoV-2 serological tests were not performed. OBJECTIVE: Evaluation of COVID-19 vaccine humoral responses and breakthrough infections among low risk fully vaccinated rheumatic patients during the Delta Variant Era. METHODS: A case series of 19 fully vaccinated patients with rheumatic diseases were followed to determine post vaccine SARS-CoV-2 neutralizing antibody titers and to monitor the development of breakthrough infections up to eight months post vaccine at our tertiary care center in Jeddah, Saudi Arabia from 1st April until 30th November 2021. RESULTS: The mean age of patients was 49 years old. 10% of patients were receiving Rituximab. 73% of patients had positive SARS-CoV-2 serological testing post second vaccine. Two mild breakthrough COVID-19 infections were diagnosed six months post second dose of vaccine. Patients were less than 65 years, did not receive Rituximab, did not have interstitial lung diseases and had positive post vaccine serological testing. CONCLUSIONS: We demonstrated high SARS-CoV-2 neutralizing antibodies seroprevalence and self-limiting breakthrough infections in low risk rheumatic diseases patients during the Delta Era. Future studies are needed to study the outcome of rheumatic diseases patients in the Era of Omicron in view of viral immune escape responses.

19.
Diagnostics (Basel) ; 12(4)2022 Mar 28.
Article in English | MEDLINE | ID: covidwho-1887179

ABSTRACT

Background: The global pandemic coronavirus SARS-CoV-2 has a healthcare, social and economic burden. To limit the spread of the virus, the World Health Organization (WHO) urgently called for extensive screening of suspected individuals; thus, a quick, simple, and sensitive diagnostic assay is always in need. Methods: We applied reverse transcription-loop-mediated isothermal amplification (RT-LAMP) for the detection of SARS-CoV-2. The RT-LAMP method was optimized by evaluating two fluorescence amplification mixes and several reaction times, and results were compared to the standard real-time RT-PCR (rtRT-PCR). The assay was validated using 200 nasopharyngeal swabs collected in viral transport media (62 positive for SARS-CoV-2, and 138 negative for SARS-CoV-2 detected by the rtRT-PCR method). The samples were diluted 1:4 in diethylpyrocarbonate (DEPC)-treated water, utilized for RT-LAMP using different singleplex and multiplex sets of LAMP primers (N gene, S gene, and orf1ab gene), and incubated at 65 °C using real-time PCR 7500. Results: Our direct detection with the RT-LAMP protocol showed 100% concordance (sensitivity and specificity) with the standard protocol used for the detection of SARS-CoV-2 nucleic acid. Conclusions: In this study, we set up a rapid, simple, and sensitive RT-LAMP assay for the detection of SARS-CoV-2 in clinical samples. The assay is suitable for point of care detection in public hospitals, medical centers in rural areas, and in transportation hubs.

20.
J Infect Public Health ; 15(6): 628-630, 2022 Apr 28.
Article in English | MEDLINE | ID: covidwho-1873160

ABSTRACT

In the era of SARS-CoV-2 variants and COVID-19 vaccination, the duration of infectious viral shedding and isolation in post vaccine breakthrough infections is challenging and depends on disease severity. The current study described a case of SARS-CoV-2 Delta variant pneumonia requiring hospitalization. The patient received two doses of BNT162b2 COVID-19 vaccines, and he had positive SARS-CoV-2 viral cultures 12 days post symptom onset. The time between the second dose of vaccine and the breakthrough infection was 6 months. While immunosuppression is a known risk factor for prolonged infectious viral shedding, age and time between vaccination and breakthrough infection are important risk factors that warrant further studies.

SELECTION OF CITATIONS
SEARCH DETAIL